6,498 research outputs found

    The common nodulation genes of Astragalus sinicus rhizobia are conserved despite chromosomal diversity

    Get PDF
    The nodulation genes of Mesorhizobium sp. (Astragalus sinicus) strain 7653R were cloned by functional complementation of Sinorhizobium meliloti nod mutants. The common nod genes, nodD, nodA, and nodBC, were identified by heterologous hybridization and sequence analysis. The nodA gene was found to be separated from nodBC by approximately 22 kb and was divergently transcribed. The 2.0-kb nodDBC region was amplified by PCR from 24 rhizobial strains nodulating A. sinicus, which represented different chromosomal genotypes and geographic origins. No polymorphism was found in the size of PCR products, suggesting that the separation of nodA from nodBC is a common feature of A. sinicus rhizobia. Sequence analysis of the PCR-amplified nodA gene indicated that seven strains representing different 16S and 23S ribosomal DNA genotypes had identical nodA sequences. These data indicate that, whereas microsymbionts of A. sinicus exhibit chromosomal diversity, their nodulation genes are conserved, supporting the hypothesis of horizontal transfer of nod genes among diverse recipient bacteria

    User Interaction with Linked Data: An Exploratory Search Approach

    Get PDF
    NoIt is becoming increasingly popular to expose government and citywide sensor data as linked data. Linked data appears to offer a great potential for exploratory search in supporting smart city goals of helping users to learn and make sense of complex and heterogeneous data. However, there are no systematic user studies to provide an insight of how browsing through linked data can support exploratory search. This paper presents a user study that draws on methodological and empirical underpinning from relevant exploratory search studies. The authors have developed a linked data browser that provides an interface for user browsing through several datasets linked via domain ontologies. In a systematic study that is qualitative and exploratory in nature, they have been able to get an insight on central issues related to exploratory search and browsing through linked data. The study identifies obstacles and challenges related to exploratory search using linked data and draws heuristics for future improvements. The authors also report main problems experienced by users while conducting exploratory search tasks, based on which requirements for algorithmic support to address the observed issues are elicited. The approach and lessons learnt can facilitate future work in browsing of linked data, and points at further issues that have to be addressed

    Robot manipulator self-identification for surrounding obstacle detection

    Get PDF
    Obstacle detection plays an important role for robot collision avoidance and motion planning. This paper focuses on the study of the collision prediction of a dual-arm robot based on a 3D point cloud. Firstly, a self-identification method is presented based on the over-segmentation approach and the forward kinematic model of the robot. Secondly, a simplified 3D model of the robot is generated using the segmented point cloud. Finally, a collision prediction algorithm is proposed to estimate the collision parameters in real-time. Experimental studies using the KinectⓇ sensor and the BaxterⓇ robot have been performed to demonstrate the performance of the proposed algorithm

    Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought

    Get PDF
    Terminal drought during the reproductive stage is a major constraint to yield of chickpea in many regions of the world. Termination of watering (WS) during podding in a small-seeded desi chickpea (Cicer arietinum L.) cultivar, Rupali, and a large-seeded kabuli chickpea cultivar, Almaz, induced a decrease in predawn leaf water potential (LWP), in the rate of photosynthesis, and in stomatal conductance. Compared to well-watered (WW) controls, the WS treatment reduced flower production by about two-thirds. In the WW treatment, about 15% of the flowers aborted and 42% (Rupali) and 67% (Almaz) of the pods aborted, whereas in the WS treatment 37% and 56% of the flowers aborted and 54% and 73% of the pods aborted, resulting in seed yields of 33% and 15% of the yields in WW plants in Rupali and Almaz, respectively. In vitro pollen viability and germination in Rupali decreased by 50% and 89% in the WS treatment, and pollen germination decreased by 80% in vivo when pollen from a WS plant was placed on a stigma of a WW plant. While about 37% of the germinated pollen tubes from WW plants and 22% from the WS plants reached the ovary in the WW plants, less than 3% of pollen grains reached the ovary when pollen from either WS or WW plants was placed on a stigma of a WS plant. It is concluded that, in addition to pod abortion, flower abortion is an important factor limiting yield in chickpea exposed to terminal drought and that water deficit impaired the function of the pistil/style more than the pollen

    Profiling exploratory browsing behaviour with a semantic data browser.

    Get PDF
    Semantic Web technologies are increasingly being adopted for aggregating Web data. Tools such as Semantic Data Browsers have been proposed to assist users to access and make sense of the vast semantic space. However, further investigations are needed to understand how users make use of the additional semantic features provided by these new breed of browsers and their effectiveness in supporting exploration of a domain. Measurements of browsing behaviour in a semantic space are also needed. Using the log data from a semantic browser (MusicPinta) for the music domain, this paper takes the first step in profiling browsing behaviour of users in a semantic space and compares the outcome against their task performance. Two exploratory search tasks were designed for the experiment. Movements in terms of users traversing the provided semantic links in the browser were captured and the patterns of clicks between abstract and concrete concepts were analysed

    A Hybrid Artificial Bee Colony Algorithm for Graph 3-Coloring

    Full text link
    The Artificial Bee Colony (ABC) is the name of an optimization algorithm that was inspired by the intelligent behavior of a honey bee swarm. It is widely recognized as a quick, reliable, and efficient methods for solving optimization problems. This paper proposes a hybrid ABC (HABC) algorithm for graph 3-coloring, which is a well-known discrete optimization problem. The results of HABC are compared with results of the well-known graph coloring algorithms of today, i.e. the Tabucol and Hybrid Evolutionary algorithm (HEA) and results of the traditional evolutionary algorithm with SAW method (EA-SAW). Extensive experimentations has shown that the HABC matched the competitive results of the best graph coloring algorithms, and did better than the traditional heuristics EA-SAW when solving equi-partite, flat, and random generated medium-sized graphs

    Normal state electronic structure in the heavily overdoped regime of Bi1.74Pb0.38Sr1.88CuO6+delta single-layer cuprate superconductors

    Get PDF
    We explore the electronic structure in the heavily overdoped regime of the single layer cuprate superconductor Bi1.74Pb0.38Sr1.88CuO6+delta. We found that the nodal quasiparticle behavior is dominated mostly by phonons, while the antinodal quasiparticle lineshape is dominated by spin fluctuations. Moreover, while long range spin fluctuations diminish at very high doping, the local magnetic fluctuations still dominate the quasiparticle dispersion, and the system exhibits a strange metal behavior in the entire overdoped regime.Comment: 5 pages, 4 figure

    Numerical simulation of the fractional Bloch equations

    Get PDF
    In physics and chemistry, specifically in NMR (nuclear magnetic resonance) or MRI (magnetic resonance imaging), or ESR (electron spin resonance) the Bloch equations are a set of macroscopic equations that are used to calculate the nuclear magnetization M=(,,) as a function of time when relaxation times and are present. Recently, some fractional models have been proposed for the Bloch equations, however, effective numerical methods and supporting error analyses for the fractional Bloch equation (FBE) are still limited. In this paper, the time-fractional Bloch equations (TFBE) and the anomalous fractional Bloch equations (AFBE) are considered. Firstly, we derive an analytical solution for the TFBE with an initial condition. Secondly, we propose an effective predictor-corrector method (PCM) for the TFBE, and the error analysis for PCM is investigated. Furthermore, we derive an effective implicit numerical method (INM) for the anomalous fractional Bloch equations (AFBE), and the stability and convergence of the INM are investigated. We prove that the implicit numerical method for the AFBE is unconditionally stable and convergent. Finally, we present some numerical results that support our theoretical analysis

    Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting

    Get PDF
    Determining cost-effective semiconductors exhibiting desirable properties for commercial photoelectrochemical water splitting remains a challenge. Herein, we report a Sb2Se3 semiconductor that satisfies most requirements for an ideal high-performance photoelectrode, including a small band gap and favourable cost, optoelectronic properties, processability, and photocorrosion stability. Strong anisotropy, a major issue for Sb2Se3, is resolved by suppressing growth kinetics via close space sublimation to obtain high-quality compact thin films with favourable crystallographic orientation. The Sb2Se3 photocathode exhibits a high photocurrent density of almost 30mAcm(-2) at 0V against the reversible hydrogen electrode, the highest value so far. We demonstrate unassisted solar overall water splitting by combining the optimised Sb2Se3 photocathode with a BiVO4 photoanode, achieving a solar-to-hydrogen efficiency of 1.5% with stability over 10h under simulated 1 sun conditions employing a broad range of solar fluxes. Low-cost Sb2Se3 can thus be an attractive breakthrough material for commercial solar fuel production. While photoelectrochemical water splitting offers an integrated means to convert sunlight to a renewable fuel, cost-effective light-absorbers are rare. Here, authors report Sb2Se3 photocathodes for high-performance photoelectrochemical water splitting devices

    High-precision multi-band measurements of the angular clustering of X-ray sources

    Get PDF
    In this paper we present the two-point angular correlation function of the X-ray source population of 1063 XMM-Newton observations at high Galactic latitudes, comprising up to ~30000 sources over a sky area of 125.5 sq. deg, in three energy bands: 0.5-2 (soft), 2-10 (hard), and 4.5-10 (ultrahard) keV. We have measured the angular clustering of our survey and find significant positive clustering signals in the soft and hard bands, and a marginal clustering detection in the ultrahard band. We find dependency of the clustering strength on the flux limit and no significant differences in the clustering properties between sources with high hardness ratios and those with low hardness ratios. Our results show that obscured and unobscured objects share similar clustering properties and therefore they both reside in similar environments, in agreement with the unified model of AGN. We deprojected the angular clustering parameters via Limber's equation to compute their typical spatial lengths. From that we have inferred the typical mass of the dark matter haloes in which AGN at redshifts of ~1 are embedded. The short AGN lifetimes derived suggest that AGN activity might be a transient phase that can be experienced several times by a large fraction of galaxies throughout their lives.Comment: 14 pages, 9 figures, accepted for publication in Astronomy and Astrophysic
    corecore